Skip to main content

DIFFERENCE BETWEEN S.I AND C.I ENGINES

Criteria S.I. Engine (Petrol or Spark Ignition Engine) C.I. Engine (Diesel or Compression Ignition Engine) Working Cycle Works on Otto Cycle or Constant Volume Cycle. Works on Diesel Cycle. Mixture During Suction Stroke Takes a mixture of air and petrol during the suction stroke. Takes only air during the suction stroke. Fuel Used Uses petrol as fuel. Uses diesel as fuel. Compression Ratio Has a compression ratio that varies from 6 to 10. Has a compression ratio that varies from 16 to 20. Engine Weight and Cost S.I. engines are lighter and cheaper. C.I. engines are heavier and costlier. Initial Cost Initial cost is lower compared to C.I. engines. Initial cost is high due to high compression ratio. Starting Starting is easy. Starting is difficult, especially in cold conditions. ...

OVERDRIVE

OVERDRIVE :-The purpose of overdrive is to rotate the propeller shaft faster than the speed the engine crankshaft. It is fitted between gear box and propeller shaft. 

Construction:  It is basically an epicyclic or planetary Gear. In this 3 types of gear mounted on different shaft.These are sun gear, ring gear & Planet The sun gear mounted on the inherma Shaft which it at Centre.
The Planet geart are attached with Planet Carrier. The planet gear in mesh with sun gear and can revolve around at earth revolve around sun.
when Planet gears are revolving, Planet Carrier Shaft is also rotating.There if also a ring gear surrounding the planit gear. It has internal teeth which are in mesh with the Planet gear teeth.

Working → For overdrive, the planet Carrier is attached to the gear box shaft and sun gear attached yo Propeller shaft Thus the Planet Carrier is the driving memeberand sun gear shaft is a driven member. The ring gear is locked with the help of brake shoe. The speed of the sun gear is more the the speed of planet Carrier in r.p.m. For overdrive we lock the ring gear and overdrive is engaged.


Popular posts from this blog

DIFFERENCE BETWEEN S.I AND C.I ENGINES

Criteria S.I. Engine (Petrol or Spark Ignition Engine) C.I. Engine (Diesel or Compression Ignition Engine) Working Cycle Works on Otto Cycle or Constant Volume Cycle. Works on Diesel Cycle. Mixture During Suction Stroke Takes a mixture of air and petrol during the suction stroke. Takes only air during the suction stroke. Fuel Used Uses petrol as fuel. Uses diesel as fuel. Compression Ratio Has a compression ratio that varies from 6 to 10. Has a compression ratio that varies from 16 to 20. Engine Weight and Cost S.I. engines are lighter and cheaper. C.I. engines are heavier and costlier. Initial Cost Initial cost is lower compared to C.I. engines. Initial cost is high due to high compression ratio. Starting Starting is easy. Starting is difficult, especially in cold conditions. ...

LANCASHIRE BOILER

LANCASHIRE BOILER -   It is non portable fire tube type horizontal boiler. It consists of cylinder shells with two tubes A and B called Fire Tubes which are symmetrical in dimension. Each Fire Tubes Contain a furnace in front of it, there is a Grate over which fuel is burn. CONSTRUCTION - it is a stationary fire tube internally fired horizontal boiler. These boiler have a cylinder shell of 2m in diameter and it's length varies from 7.5m to 10m . It has two large internal fire tubes having diameter 80cm to 100 cm in which grate is situated. WORKING - The fuel is burn in a fire great and on burning the fuel combustion Process take place The fuel gas enter the main tube by the fire deflector. As the flue gas moves in tubes they heat up the tubes and water which is surrounded the tubes is also heated. After this process water is converted into steam. The steam is taken out from steam supply valve. Application - it is used in sugar mills and chemical industry. ADVANTAGES •  It...

FIRE AND WATER TUBE BOILER

Water Tube Boiler Fire Tube Boiler The rate of steam generation is high, up to 450 tonnes/hr The rate of steam generation is low, up to 9 tonnes/hr It generates steam at high pressure up to 165 bar It generates steam at low pressure, up to 24.5 bar Its overall efficiency is 90% Its overall efficiency is 70% Less water is required for steam generation More water is required for steam generation It is suitable for load fluctuations It is not suitable for load fluctuations Water flows in tubes which are surrounded by fire Fire flows in tubes which are surrounded by water Operating cost is high Operating cost is low Wall thickness is less Wall thickness is more Cost of installation is high Cost of installatio...